
Korean J. of Chem. Eng . ,4 i l )  i19~7> 1 5 - 2 2  15 

MOTIONS OF A SPHERE IN A TIME-DEPENDENT STOKES FLOW: 
A GENERALIZATION OF FAXEN'S LAW 

Seung-Man YANG 

Department of Chemical Engirleering, Korea Institute of Techm~logy, Taejon 300-3I, Korea 

(Received i 5  Mctrch 1986 �9 accepled S August 1986) 

Abstract--A general solution of the unsteady Stokes equation in spherical coordinates is derived for 
flow in the exterior of a sl~here, and then applied to study the arbitrary unsteady motion of a rigid sphere in 
an unbounded single fluid domain which is undergoing a time-dependent mean flow. Calculation of the 
hydrodynamic force and torque on the sphere leads to a generalization of the Faxen's law to tirue-dependent 
iluw fields which satisfy the unsteady Stokes equation. For illustrative purposes, we consider the relative mu- 
ti,)n r gas bubbles which undergo very rapid oscillations so that the generalized Faxens law derived for a 
sdid sphere can be applied. We also demonstrate that our results reduce to those of Faxen for the steady flow 
limit 

I. INTRODUCTION 

When a particle is immerse.d in a viscous fluid that is 
undergoing a t ime-dependent mean flow, the distur- 
bance fk~w clue to lhe presence of the particle has a 
number  uf characteristic pn~perties. [n this work we con- 

sider the mutiuu uf a spherical [)article through a single 
Llnbomded fhJid domain in the presence of an unsteady 
creeping nl,dtir at infinity. It is worthwhile to study the 
lime-dependent motion ~>f a sphere in a viscous fluid, 
not unlv because it is interesting ill its own right, but 
also because the solution leads to a resoluticm of the in- 
itial ~,alue (or startup) problem for Stokes flow. 

The mutit)[i of a single, small particle suspended in a 
Newt, mian fluid which is undergoing a nonunifoml un- 
disturbed flow has been the subject of a large number  of 
theoretical and experimental investigations. One main 
source ,~)f iJ~terest in this problem is its ce arat role in 
theoretical determinations o{ the theological properties 
uf a dilute suspension. The ma)urity of previous theoret- 
ical invesligati(ms were therefore restricted to stea@ 
creeping rotation uf particles in a linear flow, and solu- 
tions were obtained using eigenfuuction expansi~)us 
generated from the creeping flow equations by means uf 
sel)aratiun ~f variables in an appropriate coordinate 
sysleul (of. Brem~er I 1 ]). Faxeu 121 considered the creep- 
ing motion uf a sphere i[t an unboutMed fluid subject Io 
an afl)iuzlt) steady Stokes flow, in this case utiliziug an 
eigenfunctiuu expanskm in spherical coordinates. The 
solution yields the so<ailed FaxeFs law for the hvdn>- 
dyna-lfic force and torque on a rigid spherical particle in 

an arbitraD~ Stokes flow. The extension of the analyses 
to time-dependent flow has not yet received rnuch atten- 
tion in spite of its obvious importance. The earliest in- 
vestigations ~,,ere concerned with the motion of an 
oscillating sphere through a fluid at rest at infinity, due 

to Stokes {3], Basset [4] and Lamb {5]. Although this 
quiescent-fluid problem is of some intrinsic interest and 
provides a resolution of the well-known paradox in the 
Langevin equation for motion of a Brownian particle (cf. 
Hauge and Martin-L0f [6]), many problems of practical 
significance involve particle motions in a mean flow at 
infinity. 

M the present study, we derive a general solution of 
the time-dependent creeping flow equation for Itow 
region exterior to a phere. The analysis is formally car- 
ried out as an eigenfunction expansion in terms of 
spherical harmonies, based on the creeping motion ap- 
i)r<Jximation but with the local inertia term retained in 
lee equation to accommodate rapid accelerations. The 
solution for a solid sphere that we do obtain yields a 
generalized Faxen's law expressing the hydrodynamic 
h~rce and torque exerted on a rigid sphere which is 
undergoing unsteady translation and rotation in a mean 
flow at infinity which may also be time-dependent. In 
addition, we consider several applications, as well as 
deinunstrating tkat the results reduce to those of Faxen 
fi,r the steady flow ]imit. 

11. BASIC EQUATIONS AND GENERAL 
SOLUTIONS 

We begin by considering the governing differential 
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equatiuus and boundary conditions for time-dependent 
mr162 of a spherical body through an incompressible 
Newtonian fluid. The fluid is assumed to be undergoing 
a time-depeildent undisturbed flow, vvhidl b, defined by' 
a velocity U~(t,x)and pressure p~(t,x). The expression of 
Cauchy's first law appropriate to an incompressibJe 
Newtonian fluid with constant viscosity is the Navier- 
Stokes equation. By non-dimensionalizing, using ap- 
propriate characteristic' length 1, velocity ur and time 
scales % it can be seen that the solution of this equation, 
plus the continuity equation, will generally depend 
upon two basic dimensionless parameters. The first of 
these parameters is the Reynolds number defined by 

Re= u~l~ (1) 
,v 

which we shall assume here to be sufficiently small that 
the creeping motion approximation is applicable. Here, 
v( =,u/p; is the kinematic viscosity of the flmd and Ir is a 
characteristic length scale of the particle (i.e., the sphere 
radius a). The second dimensionless parameter is the 
Strouhal number St, which is the ratio of the 
characteristic time scale t,, relative to the advection time 
scale, l,/u. l,e., 

tcUc 
S t = - ('2) 

Wh< ,t this parameter is sufficiently small, the local 
acceleration term in the equations of motion cannot be 
neglected and this is the limit that we consider here. In 
this case, then, Re ~ 0 but with Re/St=0(1), and the 
governing equations reduce to the unsteady Stokes 
equativu plus the continuity equation. 

For convenience, we consider the problem specified 
with respect to a disturbance flow field (u,p) defined as 
the difference between actual flow (u ~ pO) in the 
presence of the sphere and the undisturbed flow: i.e., 

(u,p) = (u ~ p~ ) - (U% p~)  (3', 

Here, the undisturbed velocity field (U~,p ~) satisfies 
the unsteady Stokes equation plus the continuity equa- 
tion. In this formalism, the disturbance flow is at rest at 
infinity. The equation of motion for the disturbance 
veiocity field is 

O u  
P ~tt = - ~ 'P-- 'u'72 u (4) 

and 

~ u = O  (15) 

The boundary conditions for (u,p) in this 
disturbance-flow formulation are as follow:s: 

(u,p)--,'0 as I x l ~ o o  16) 

u = U  F,.Q X r• - U ~ at the boJy -;ilrfaco (7) 

in which U and g are the time-dependent translational 
and angular velocities of the rigid sphere, respectively. 

We now derive a gener(,l solution of the unsteady 
Stokes equation (4) plus the continuity equation (5) in 
terms of the fundamental eigensolutions for a spherical 
coordinate system (r,O,~). It is convenient, for this pur- 
pose, to represent the disturbance flow fielcl [u(t,x), 
p(t,x)], as a Fourier integral: 

p) = f , ) e ' ~  d w  (8) (u, 

Upon taking the divergence of the vector ,equation 
(4), expressed in terms of Fourier components (~,,15), and 
utilizing (5), it can be seen that the pressure field is har- 
monic, thus satisfying Laplace's equation: i.e., 

~ b =  0 (9) 

The pressure can therefore be expressed as an in- 
finite series in the general form: 

p =  ~ pn(r ,  0, r (10) 

in which p ,  is a solid (or volume) spherical harmonic of 
order n. Let us now consider a general solution for the 
velocity field fi with ~ given by' (10). The governing 
equation (4) in terms of Fourier components is given by 

( v  2 +hZ)6 -~ 1--vb (11) 
,u 

where h is defined as 

h = [ i w ) ~ / ~ , i = V - 1 .  (12 )  
lJ 

Here h can be determined uniquely by taking a branch- 
cut along the positive real axis in the complex plane. We 
consider, for convenience, the velocity field fi as the 
sum of a homogeneous solution, flj,, satisfying the 
Helmholtz equation 

(v~+h  ~ )fib= 0 (13) 

and a particular solution, satisfying the Laplace's equa- 
tion. The particular solution can be obtained by inspec- 
tion. 

~,o= ~ v p =  Gszo vp~ (14) 

The homogeneous solution fih can be represented as 
an expansion in terms of products of soIid spherical har- 
monics ,Y,,. r and Hankel functions of the second kind. 
HI/+'. of order n + 1/2. Hence, a general solution of the 
unsteady Stokes equation plus the continuity equation 
for a general velocity field, expressed in terms ap- 
propriate to a spherical coordinate system, is 
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{t = ~ _ .  I ~ v p , ~  - f~ (hr) v7 x i r;L~ ) @ { (n ; 1 ) 

f,~ , (hr) - nf,~+, {hr)har z} ~ ~,~ 

+ n 12n+ 1) f,-,., (hr)h '  q~,~ r ] 1'.15 ] 

in ~,hich 

: , (~ )  = i  - V,~/2~ . . . . . . .  HJ., .~ (~ i (]6) 

and ris  the position vector. It should be emphasized that 
eq. (15) is just the general solution form for the unsteady 
Stokes equations, and does not yet satisfy any of the 
boundary conditions, (6, 7), of the proMem. We now 
specialize the general solution, (15), to deternline the 
solution form exterior to a spherical body. 

A. F l o w  e x t e r i o r  t o  a s p h e r e  
In the derivation of, the general sulution, (15), we 

defined the disturbance velocity field as in (3), thus 
reducing the problem to a vanishing velocity at infinity. 
For the situation in which lhe velocity is required to 
vanish at infinity [i.e., boundary condition (6)], we must 
have 

p , = 0  for n ~ _ - i  r 

cPn, X,-,= 0 for n < 0 (18) 

and :hus we are restricted to the harmonic functions q~,,, 
,~,.,, of positive order and p,-,of order less than -1. Taking 
into account conditions (17) and (18), we see that 

i t = X  - ~ V P  . . . . .  - f n ( h r ) v •  

t- / ( n + l )  f,, , (hr) - nf,,§ (hr)h2re}vq~,~+ 

+ n t2n4- l) fn+, (hr) h'q~,,r] (19) 

and 

i) = _F p ........ 20;, 
n = l  

B. G e n e r a l  e x p r e s s i o n  f o r  h y d r o d y n a m i c  f o r c e  
a n d  t o r q u e  

So far we have derived a general solution for the flow 
field exterior to the sphere by satisfying the governing 
differential equations (4) and (5) plus the boundary con- 
dition (6) at infinity. All that remains is to determine the 
unknown solid spherical harmonics p,~, ;tn and ~p,~ in 
the flow from the boundary condition (7) at the sphere 
surface. However, if we wiish only to calculate the 
hydrodynamic force and torque on a sphere (fluid or 
rigidl, and not the velocity field itself, it is possible to do 
so by evaluating only a small number of spherical har- 
monics p,~, Z,, and CPn as a consequence of the integral 
theorem for the spherical harmonics (see Happel and 
Brenner [7]). To show this, we now derive a general ex- 
press ion  for the Four ie r  c o m p o n e n t  of the 
hydrodynamic force F' and torque t on an arbitrary 

body by integrating over a circumscribed sphere in the 
fluid. 

The Fourier components of the hydrodynanfic force 
and torque exerted on the sphere can be obtained from 
the general solution for the &sturbance flow field either 
interior or exterior to the sphere, using the basic defini- 
tions 

/ '= fn .  clds 121) 

' i ' =  f r0 • 'in" b ) a s .  (22) 
J 

Here, a- is the Fourier transform of the stress tensor 
associated with the disturbance-flow problem, and r0 is 
the position vector of a surface element ds (= r  e 
sinod,gd~) relative to the sphere center. Then, the 
Fourier component of the total hydrodynamic force Fo 
and torque ~.o for the actual f low field (uo, p) (:an also be 
determined from the actual stress tensor a ~ - a §  ar 

l>~ = f , , .  (S + a a (e3:, 

'i'~ =fro • {n. < , : } + 8 " ) } d s = ' i ' + f r .  x (n-g")ds  

(24) 

in which the stress tensor ~,~ is associated with the un- 
disturbed flow field (I7I ' ,  ~,'~) and defined by 

;-~'= - f ,~l ~,u ( v / J ' ~  ( ~ l )  ~) ~) .  (25) 

Here I is the idemfactor and ('~U'~) r is the transpose of 
the velocity gradient tensor. Utilizing the unsteady 
Stokes equation which is satisfied by the undisturbed 
flow (l~t ~', !5 ~) and applying the divergence theorem to 
the surface integration of (23), we can easily show that 

f n - , 5  ~ds = - i w p  fl~r ~dv. :26) 

Thus the Fourier component of the total hydrodynamic 
force is 

/.o 
= 1~ - i~,o f{J*dv  (27J 

where dv(= r2sin0drd0d~) is the volume element of the 
sphere. Here the additional term, -ioop fl)~dv can be in- 
terpreted as an apparent (or "fictitious") body-force that 
compensates for the acceleration of the external flow. 
Similarly, the total hydrodynamic torque relative to the 
sphere center is 

'r~ = ' i ' -  ko,o f (r0 • ~J~) d,, (28! 

We now evaluate the Fourier component of the 
slress vector an( = n.g-) acting on the surface of a sphere 
associated with the disturbance flow in order to deter- 
mine the total hydrodynamic force and torque on the 
sphere. The stress vector ~-,,,, on the sphere surface of 
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radius r, iit general, can be expressed as 

a~,=-  r - - b - p  - - ] ~  ~ l ' r . f i )  (29) 
r r  r 

for an incompressible Newtonian fluid (cf. Happel and 
Brenner {7J). By means of the general solution (10) and 
(15), eq. (29) can ultimately be expressed in the form 

D',~ 1 _~ [ _  Q , ~ ( h r ) ~ •  Z,~) _F 2 
= r - n =  ~ hi ( n - 1 ) ~ p ~  

- Pnr ~'Rn (]lr)~7~. (2n i1)  S,, (hr)r (30) 
r 

where 

Q,~(~-) =/x {~'-f~ (if) + (n -  {) f,, (~')/ 

R ~ ( ( ) = / x ( n + l ) l r  . . . .  ' ( . t ' ) + 2 ( n - 1 ) f =  , (~ ) /  

- z n ~ "  {r . . . .  (~') - f,,+, (~)  } 

and 

S,,(~ '  ) = - ~ , q '  {~'. f . . . . .  (~') - f,,+, (~'} t .  

The Fourier components of the hydrodynamic force 
and torque exerted on the sphere can be obtained from 
(21), (22) and (30) by integrating the stress over the 
sphere surface. This general expression can be 
evaluated by resorting to the surface integral theorem 
for spherical harmonics outlined by Brenner [1}. The 
result is 

4 2"( r" 3 
l ~ = : - ~ - L r  RTPi~- '~ ' ( r 'P , ) ; , = a  

~-.I ~ra {R, (ha) - S, (ha) / [7~P. 1 ,-a 

l ~ s  . . �9 I a2 ~ (ha) r~(r3~p ,) )~ ~ (31 

T ~  8 K  3 - ~ -  {a Q, (ha) ['Tj(, ~1 ,-: a -  Q , '  ha: 

[ ~ ( r ' Z - , )  ],=a } (32) 

It should be noted that the general expressions. (31) and 
(32), have been derived for an arbitrary motion satisfy- 
ing the unsteady Stokes equation plus the continuity 
equation without application of any boundary condition. 

Now, however, we determine the general form for 
the tohjI hydrodynamic force and torque an the sphere 
from (27) and (28), evaluating the hydrodynamic force 
and torque associated with the disturbance flow exterior 
to the sphere by applying the conditions (I7) and (18), 
corresponding to a vanishing velocity at infinity, to lhe 
general expressions (31) and (32). The result is 

l ~ ~  4~l~( r~p_~)~r : ,~+4zatR , ( h a ) - S  (ha)} 
3 ' 1 

[~r ] ,-=<, - iwp / ' I )  ~d,,, (33) 
J 

8~a'Q, (ha) {':~Z,] r~a- io~pJr0~ x , to 0 ~<:lv 
3 

(34) 

Thus, in order to evaluate the total hydrodynamic force 
and torque, it is sufficient to determine the unknown 
spherical harmonics p-2, q~l and X E by applying the 
boundary condition (7) at the sphere surface. 

This completes our derivation of the general solution 
forms for the flow field exterior to a sphere. In the next 
section, for illustrative purpose, we shall consider mo- 
tion of a solid sphere in an arbitrary unsteady creeping 
flow. 

IlL F L O W  E X T E R I O R  T O  A RIGID S P H E R E  

Let us now consider the specific problem of eL rigid 
sphere which moves with translational velocity U(t) and 
angular velocity g(t) in an undisturbed flow field {U ~ 
(t,x), p~ (t,x)] which itself satisfies the unsteady Stokes 
equation and the continuity equation. As we shall see 
shortly, this problem may be solved directly, for an ar- 
bitrary time-dependent translation and rotation, using 
the general solution obtained in Section [i. All thai: is re- 
quired is a specification of the unknown functions of 
p-(,~+ I),r and Z,~ front tile boundary conditions at the 
sphere surface, i.e., the no-slip condition(7},with r x ) 
- U (w) + g(w) x ro. In tire present section, we shall 
use the general method uf Brenner ll1 for obtaining 
these solid spherical harmonic flmctions when the 
velocity field is prescribed on a spherical surface. 

L/tilizing Eulers theorem for the homogeneous 
polynomial of any solid spherical harmonics ~,~ ()f order 

n (i.e. r O ~ -  n~,~), we now represent the radial cumpo 
Or 

nent of velocity 6,.[ = f i ' n )  from (19). 

-o [ (n4-1) { (n~ 1',' 
z 7VZp ...... + "  7 - -  f ' - '  (h,-) 

+ ( n + i )  f=+, (hr)hlr}(pn] 

Differentiation of (:]5) with respect to r and again apply- 
ing Euler's theorem yields 

a a ~ _  ~ 7. ( n + l )  ( ~ + 2 ) p  . . . . .  + ,,{ 0~ " -  1) f , , ,  (hr)  
r Or - -  ~ l  j:h2/z r - -  ' 

+ (n+l)Zh' r fn+,  (hr) + (n+l )hf~  ,' (hr) 

+ (n-l- l)h3r2f.+~ (hr) } r (36) 

Similarly, we ilaw~ another relationship from (19) 

r . v X / t = -  Z n ( n + l ) f , ( h r ) z , ,  t377 
n= l  

Thus, at the surface of a sphere (r = a) we can obtain the 
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quantitiesuffl,(r a). r O r  , -~and [r.ve> ill, . f r o l n  

(35)-(~7), which are necessarily equal to those given by 
the boundary condition (7). Let us now suppose that the 
boundary condit ion (7) has been expressed as a 
uniformly convergent series expanded in terms of su, :  

face spherical harmonics X,,, Y, and Z,,. Then 

n 1 

. ~ - - J  r = a = a X T "  [ U  ~ . . . .  = ==,f Y. (39) 

and 

( r .vx~i} , - .~ ,=l r , .  1 2 . ~ - v •  10-1,:~11 = ~ Z .  
n = l  

(40) 

Since the functions X,, Y,, and Z, are known in prin- 
ciple from the prescribed velocity field at the sphere sur- 
face, any bounda W value problem may therefore be 
considered to be solved in principle, with the unknown 
functions P-I,,, u, cp,,, and Z,, determined from (35)-(37) 
combined with (38)-(40). If we wish only to calculate the 
hydrodynamic force and torque on a rigid spherical par- 
ticle, but not the velocity field itself, it should be possible 
in view of (33) and (34) to do so by determining only p_:,, 
r and ZI. Indeed, it can be shown, by solving the 
tedious algebraic eqs. (35)-(401 for n -  1, that 

I~,].,-:,,. ha~[3X'4"Y'~ e ~h'~ (41) 
6 

() ~]~=~ , u [ ' , 3F3 iha-h ' a~)X,  F ( l + i h a )  Y,) 
2a 

(42) 
and 

h3ale~,haZl 
[X,] .=I (43) 2 (14"iha) 

in which we have used the special property of the func- 
tion f,,(~): 

e - ~ha 
~ ' ' f n . , ( ~ ' ) = -  f~,(~') with f o ( ( ) =  - -  

Finally, recalling the relationship between an ar- 
bitra W solid spherical harmonic ~:, and the correspond- 

ing surface spherical harmonic @,d . . . .  i. e. e,,=( r ),, 

~ ,~} ..... we can obtain the unknown functions p_> r 
and X'] and thus derive the general formulae for tim 
hydrodynanfic force and torque as follows: 

1 ~~ = - 67r/za (1 +ahi) [ K 7 ( r X t )  ] ~=~+2~aahZ ' 
6 

�9 [~7(rX~)l ~=~ - 2~rtta (14-ahi) [~7(rY~) ) .... 

f iwp j r .  ~dv ',ll. ) I 

,i,~ 4 zr/xa s r3 + 3 a h i -  aql" 
. . . . . .  (, 

3 1 Fahi ] '.7'(rZ, i]~:a 

- iwp . f r  o X iT ~dv (4,5 { 

All that remains is to determine the unM~own sur- 
face harmonics XI, Yl and Z~ from the bounda~' condi- 
tion (38)-(411) utilizing Hm urtbogonality properties of the 
spherical harmonics. For example, 

X , = , ~  f ~ , ~ ( O ,  ~ I :46/ 
* n - - i  

where ,~["- is the normalized surface harmonic of order 1 
and degree rn: i,e,, .~=cos 0, ~, ' - -s in0 (cos,~--bisin~) 
and ~ ( M  sin0(cos~-isin,~), and f,-,,.j is the correspond- 
ing coefficient defined by 

z;'r ar n 

,f I s i n / d / d O  (47) 

with the normalizing factor N,, ,=4~r (n F fml ! )  
2 n t l  . i n - l m l ! ) .  

Similarly, the surface harmonics Y~ and Z1 can also be 
delermined, and the resulting general solution for the 
total force and torque including the fictitious body force 
and couple terms is given by 

a 2 h  2 * 

(ah - s inah) 
+ er,ua~(6 (1 4"ahi) a~h~ 

t-2 (s inah-  ah-cosah 1 ~7 ,. ~7q~ -~) 
' hSa s 3 " 

- iwp fl~" ~dv 

,~o= 4~r,ua 3 . [ 34"3ahi-a~h2 
3 14. ahi 

-2b; - io,,o f (,,, • O~)av 

(48) 

[ sinah (V• 

(49) 

with h = - y co/2.,.,(1 + i ). 

Here, tile symbol [ ]. implies lhat the quantity in the 
bracket is to be evaluated at the location of the sphere 
center. 

As we noted earlier, the undisturbed velocity field 
[J'~ which satisfies the unsteady creeping-motion equa- 
tion can be divided intojwo parts(0 ~ = fJ~. + 0'~): one 
is the irrotational part U~, governed by Laplace's equa- 
tionv2[17 - 0 and the other is the rotational part U'Z 
satisfying Helmholtz equation (v2+ h2}t.l~ ' = O. For the 
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l)mp~,se ~,{ e,,aluating the integrals (,IS) and (-19), it is 
o~nvenieut ~ utilize the m(,au value theorems fur the 
L-~p!aces and Hehntu~l:z equations, respectiw~ly: i.e,, 

f(: ~dv= §  ~ (50~ 
{za~ 

~ !)2]0 ~ [ 7 ; ]  
3 ~ ' 

where WOO is a weighting function defined as 

sinah cosah 
W :h) - 3  I I (51) 

a~h ~ a~h ~ 

So far we have determined tile Fourier components 
F~ "i'~ the hydrodynamic force and torque on a 
sphere which moves with arbitrary translational and 
rotational velocities through an unbounded fluid that 
underg,~es an undisturbed flow(0-:, ,6 "<) that is governed 
by the unsteady Stokes' equation. In the next section, 
we shall briefly consider the application c,I tile fun- 
damental resulls determined above. 

IV. DISCUSSION 

Let us now begin with the creeping motion of a solid 
sphere in au undisturbed steady Stokes flow, thus pro- 
viding a basis to check the present results against 
Faxen's [21 law. It is a simple matter to reproduce Fax- 
en's law by taking ]mill h ~ 0. in the solution (48) and 
(19): 

LI .o zr/la 3 F :=6;r,ua/r '"" -1.", Jr- ~';72U~o (152) 

and 

T =  8 ~ a  3 / 2- ~ v x  U ~ - ~ ~ i53) 

According to this well-known result, we can e~ aluate tile 
hydrodynamic force and torque c~n a sphere with an ar- 
bita~" motiun U and ~2 in an unbounded fljid that is 
itself undergGng a steady creeping (but otherwise ar- 
bitraD't flow at infinity (U ~, p'% in terms solely of the 
values of U ~ '7 x U ~ and "~ ~U ~ at the position oc- 
cupied by the center of the sphere. 

As another simple illustration of the apl:lication of 
(48) and (49), we consider the problem of a rigid sphere 
moving with an arbitra~ time-dependent w~locity U(t) 
through a fluid which is at rest at infinity (i.e. U ~~ - 0). 
We can readily calculate the hydrodynamic force on the 
sphere by taking an inverse Fourier-transform of expres- 
sion (48). Tire result is 

2rrpa 3 dU 6~p a2"V u/rr  
F =  - 6,"r. aU - 3 dt 

i t d U .  drr 
,o d r  tVTZ-- ~ (54) 

The s,Jlution (54) was originally developed by Stokes 

!3], and Basset [4]. The first term is the so-called Stokes 
drag; tl~e second is known as the added mass contribu- 
Lion and accounts for the change of fluid inertia in in- 
compressible flow past an accelerating sphere; the last 
term is called the Basset term and expresses the effect of 
the previous history of the particle velocity on the 
hydrodynamic forc.e. It may- be noted that the added 
mass contribution is independent of the viscosity of the 
fluid, and would thus be expected even in an mviscid 
potential flow. 

WM n a freely suspended, spherical particle is im- 
mersed i,a an usdl~ating fluid, the particle motion has a 
number of important properties. In order to study these, 
it is convenient to begin with a simple but typical exam- 
pie that was considered previously by Batchelor [8]. We 
now ::onsider the problem in detail, demonstrating that 
the present result, (48), reduces to that of gatchelor [81. 
Let us suppose thai an unbounded, incompressible fluid 
executes a simple hamlonic oscillation corresponding to 
the passage of a sound wave: i.e., 

Zrr 

;t 

and that the magnitude of this undisturbed veIodty, 
e=  Icl is small enough for the convective inertia 
associated with the sound wave to be negligibk. Then. 
since the ul~dislurbed flow (i e .  the sound wavel will be 
governed by the unsteady Stokes equation, we can app- 
ly the general expressions (48) and (49) to determine the 
hydrodynamic force and torque on a solid sphere for 
any arbitrat) frequency {o and.wave number k. Fur pub 
[loses td the present discussion, however, we make the 
further simplifying assumption that the fretluency is 
large erlough that the vorticity boundary layer is 
vanishingly thin oumpared to both the sphere radius a 

and the wave lenglh X (i. e. - -  >> 1 and - -  >> 1). 
1..' 1] 

In this case, by non-dimensionalizing the unsteady 
Stokes equation, using the characteristic length a, veloci- 
ty (: and time w ~, we can easily show that the viscous 
stress contribution in the equation of motion is negligi- 
ble relative'tn the local acceleration au/OL The flow ex- 
terior to tile sphere is therefore irrutational except for 
the very thin vortir ity bounda~'-Iayer around the sphere 
surface, and the hydrodynamic force carl be determined 

easily by taking a limit c~ >> ! and w~2>> l to 
1/ IJ 

the general expression (48) to be 

F" - 2 ' rpa3 dU~" dU / 'dU '~ ,, 
. . . . . . .  d~-! + p  ,'56~ 3 t d T t J o -  j Z - a  ~ , 

It should be noted that the hydrodynamic force, (56), is 
valid for any spherical body (solid or fluid) and is actual- 
ly independent of the fluid viscosity-indeed, in tt].is limit 
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the fluid motion exterior to tile sphere can be regarded 
as an irrotatioiml-potential flow. TMs tiydrodyllamic 
force is balanced in the equation of motion for a 
spherical body (solid ur fluid) by the particle inertia con- 

tributiork4,'ra3,o,, . OU .Evaluati:~g the fictitious body 
3 8 t  

f OU~dv in 56),by means of the mean force term, p ,:9 t 

value the,orem for Laplace% equation, w.., can use the 
equation of motion for the [)article to obtain its velocity 
as a function of the instantaneous ;elc, cit', of the exter- 
nal undisturbed flux',, 

u = -  :_~k_ ',t ~30 <37 :I 
2p ;, s 

Hen p denotes the particle density. F,Jr a nell{rally 
buo, 'ant parlicle, il can be seen that the amplilude uf the 
oscillation of the sphere velocity is exactly the same as 
thai of the undisturbed motion of tile surr,,unding fluid. 
If the sphere is lighter, however, ils veh,c:ily oscillates 
with grealer amplitude flmu file undisturbed velocily of 
ti le fluid. Indeed, for a gas bubble (i.e., P,,--> 0) immers- 
ed in a fluid, the instantane~ms velocily is approximalely 
three times larger than the local uudisturl,ed ve]ucily of 
the fluid eva!uated at the location of the bd)b le  cenler, a 
result which can be observed in flow-visualization ex- 
per}ments as Batchelor 181 has pointed oul. 

Finally, let us turn to a further application of the 
general result, (48), to investigate the "relative motion" 
of two gas bubbles whicf~ undergo re@' rapid and small 
ampli tude oscillations in w)]ume in the same phase. As 
we mentioned in the foregoing problem, tlJe existence of 

. �9 2 1 ~  high frequency (i.e., wa , >> 1 and ~X 2Iv >> 1 ) and 
small amplitude bubble oscillations ensures that the 
viscous boundary layer is very thin and thus ttle gem~ral 
solution (48), which is initially derived for a su/id 

sphere, can be applied to the lluM sphere problem in 
this asymptotic limit. Conditions for validity of tile high- 
frequency approximation can be derived by expressing 
tile oscillafiou amplitude m terms of tile physical proper- 
ties of tile system. For a spherically expanding bubble, 
the velocity field exterior Io the sphere is given by u :: 

a da ( ) ~ [., and this is an irrotational vel,'.~city distribu- 
r d7 

t i . r  t ie. .  ~ x u = 01. The corresponding Navier-Stokes 
equation, in tMs case, redtlces lo the Rayleigh-Plesset 
equation for the instantaneous bubble radius a(t) 

_ 2 ? ' ,  d:~a + 3 { da,pz 4 z  da 1 , P -  P . . . .  , 158) 
adt2 2 'd~t' a dt p a 

Here 7 is the surface tension and p is tile pressure inside 
the bubble which is related to a(t) by the ther- 
mo:lynamic equation 

-P-= ( a~ ~ ,59J 

prcwided the gas inside the bubble is ideal and remains 
at a constant temperature. In (g,q), Po and % denole the 
equilibrium pressure and radius, respectively. We suck a 
solution of (58) combined with (39) in the form: 

a l l )  = a 0 ( l s  i"'d I, s o < l  ',60} 

Substituting (59) and (6()) into (58) and then e'xpauding 
file resultant equation in terms of small ~0, we can 
determine a. and co.: 

27 
ao = - ,o ',61, 

Po -- P 

pao 

Thus, the conditions fur validity of the high-frequency 
approximation are 

47i2P0 +-p-~ ] 
2 2 >> 1 :63! 

,or (Po - P") 

4 "'9 3, !~P0 + P ' )  (P0- P') 2 
>> 1 (64 l 

4 p y 2 v  2 

When these conditions are satisfied, tile "v'iSC(r terms m 
(48) wil l  be negligible. We now consider tv,'o adjacent 
gas bubbles i and '2, each executing rapid but small- 
amplitude oscillations in volume such that (64) and (65) 
are satisfied. In vww uf (60), the volume v of each gas 
hubble is approxilnately v = %(1 + ee-,,'o,) with c = 
3% ( << 1). Each oscillating bubble will then induce an 
accelerating veMcity field in the surrounding fluid and 
rims influence the other's molion. The veh.,city field 
generated by the second bubble in tile direction of the 
first I)ubble, say e ,  is simply 

iCU~ ~ voe ~e'ot 

U e, (65) 
4Jrr 2 

in which i is the distance from the center of the second 
I)ubble. But, tile equation of motion for the first bubble 
in the flow field U'% uqder tile l itniting conditions, (63) 
and {64), can be derived by balancing the particle iner- 

tia, la'P~'aS dU~ with the hydrodynamic force evahia- 
3 dt ' 

2 I  ted frorn (48) in the limit of wa / v >> l, i.e. 

p ~ .  dLr~ 1 d ~ a ' l [ U " ] o - U , ' ,  ~-q- ~ 1o 
p dt 2a 3 dt 

:66; 

Upon substituting the expression for a. (60) combined 
with (61) and (62), into (66) and expanding U~ asymp- 
totically in powers of %, 

2 . j  1, ~_ 3 .  T 2 ,  U t = ~ 0 U i ~  Cot1 4 .... (67l 
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we can readily evaluate the acceleration of the first bub- 
ble with the additional condition PiP -+ 0: 

dU, 
d~- = 3 [ ; . + 6 i w o e o  [U~;oe '~~ (eo 3) 

(68) 

The average acceleration of the first bubble over one cy- 
cle of osciUation can also be determined by combining 
(65) with (68), 

dU 1 6 ~  ~' (2po +p% 
dt (po- p~)pd ~ e l + O  (eo 3 ) (69) 

in which d is the separation distance between the 
centers of the two gas bubbles. I,t is obvious, from the 
definition of the vector e~ and the expression (69), that 
the first bubble undergoes a mean displacement over 
each cycle of oscillation in the direction of the second 
bubble. Thus, it appears as though there were an in- 
teraction force, between the two gas bubbles, that is at- 
tractive and results in a tendency for gas bubbles to ap- 
proach one another and ultimately coalesce. The "at- 
tractive force" is normally small, but ultrasonic vibra- 
tions of a liquid can be used to clear it of gas bubbles as 
noted by Batchelor [8]. 

This completes our illustrative applications of in- 
terest using the general solutions that were developed in 
Sections II and Ill. A generalization of the present 
analysis is currently under way in this research group to 

an arbitrary motion of a spherical drop through a time- 
dependent Stokes flow in either an unbounded fluid or 
in the presence of a plane fluid interface. 
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